PB375A U盘读写芯片
单片机读写U盘模块
单片机读写SD卡模块
BF3040蓝牙4.0模块
  DBF10A低成本蓝牙模块
  BF10蓝牙模块
  BF10-A 蓝牙模块(AT)
  BF10-I 蓝牙模块(IO)
BF10-SC 蓝牙模块(扫描)
  BF10-H蓝牙模块(HCI)
RS232 蓝牙串口
USB蓝牙模块<ARM>
蓝牙串口适配器
BT1800远距离蓝牙模块
RS232远距离蓝牙串口
  USB 蓝牙服务器
10米蓝牙适配器
  100米蓝牙适配器
  其它定制方案
   
 
 


业务销售1 点击这里给我发消息

业务销售2 点击这里给我发消息<已满>

技术支持 点击这里给我发消息

MSN:xiaowuyeah@163.com

地址:深圳南山高新园高新中四道龙泰利科技大厦304室

电话:(86)755-29739852

 

 

蓝牙自适应跳频技术

蓝牙是工作在2.4 GHz(2.40~2.48 GHz)ISM频段的短距离无线通信技术 , 能组成小型无线个人区域网(PAN),在办公室和建筑物中代替有线电缆,低功耗、低成本及灵活组网的特点,有着广泛的应用前景。2.4 GHz频段中还有802.11b,HomeRF及微波炉、无绳电话等电子设备,为了与这些设备兼容,蓝牙采用了AFH(Adaptive Frequency Hopping),LBT(Listen Before Talk)、功率控制等一系列独特的措施克服干扰,避免冲突。随着 无线电通信技术 的发展,频率资源日益紧张,研究蓝牙技术 所采用的频率兼容技术 对有效利用频谱、防止通信设备之间相互干扰,将有十分重要的作用。
  
  1 自适应跳频技术
  自适应跳频技术 是建立在自动信道质量分析基础上的一种频率自适应和功率自适应控制相结合的技术 。 他能使跳频通信过程自动避开被干扰的跳频频点,并以最小的发射功率、最低的被截获概率,达到在无干扰的跳频信道上长时间保持优质通信的目的。所谓频率自适 应控制是在跳频通信过程中,拒绝使用那些曾经用过但是传输不成功的跳频频率集中的频点,即实时去除跳频频率集中被干扰的频点,使跳频通信在无干扰的可使用 的频点上进行,从而大大提高跳频通信中接收信号的质量,如图1所示。
   
   蓝牙和802.11b都工作在2.4" GHz的ISM频段,蓝牙SIG(SpecialInteresting Group)和IEEE802.15.2的Coexistence Task Group都在关注二者的共存问题。许多成员都提交了自适应跳频的提案。提案中建议采用AFH技术,以便能动态地改变跳频序列,使系统 干扰最小。蓝牙采用AFH对干扰进行检测并分类,通过编辑跳频算法来避免干扰,把分配变化告知网络 中的其他成员,并周期性地维护跳频集。
  
  其中,Bijan Treister[1]等人提出的AFH共存机制具有一定的普遍性。在这种自适应跳频中,在不增加发射功率的情况下,利用干扰躲避来提高系统 的抗干扰能力。
  
  2 蓝牙AFH的步骤
  由设备识别、信道分类、分类信息交换、自适应跳频4部分组成。其框图如图2所示。
   
  2.1 设备识别
  
  当一个从设备接入微微网时,在进行通信之前,首先由链路管理协议(LMP)交换信息,以确定通信双方的设备是否支持AFH模式。LMP信息中包含了二者通信应使用的最小信道数。主机按LMP协议先询问从设备是否支持AFH,当从设备回答后,再进行AFH通信。
  
  2.2 信道分类
  
  根据某一准则,按传输质量对信道进行分类。按LMP的格式形成一个分类表,在主设备和从设备之间交换信息后,以此分类表为依据进行自适应跳频。分类方法采用时分的形式,以保证抗瞬间的干扰。按信道的质量,把信道分成“好”信道与“坏”信道。
  
  可以用以下方法对信道的质量进行评估:首先接收设备对包损率PLRs(Packet" Loss Ratios)、有效载荷的CRC,HEC,FEC误差等参数进行测量。在测量PLR时,如果PLR超过了系统 定义的门限,则宣布此信道为坏信道。从设备测量CRC时,也会自动检测此包的有效载荷的CRC,如果校验码正确,则说明接收正确的包,否则宣布包丢失。
  
  2.3 信道信息交换
  
  通过LMP命令通知网络 中的成员,交换AFH的消息。主设备通过分类,把信道分为好信道、坏信道、未用信道,然后把信道分类情况通知从设备。同时,从设备把自己的情况通知主设备。主从设备之间建立联系,确定哪些信道可用,哪些不可用,为下一步自适应频率的产生做准备。
  
  2.4 执行AFH
  
  先进行跳频编辑,以选择合适的跳频频率。
  
  由于微微网中经常有新的通信建立或撤消,信道在不断变化,所以必须进行信道维护,周期性地重新对信道进行估计,及时发现不能用的信道。当微微网中工作设备较少时,还能自动调整功率,节省能量。
  
  3 蓝牙AFH的结构
  蓝牙AFH结构如图3所示,在频率同步器和跳频序列发生器中加入了一个分组映射器,此映射器实际上是一个自适应频率选择器。
  
  分组映射器结构如图4所示。他从所需分组中选择一个信道,通过PN映射设备,从原始跳频序列中选择信道映射到分组序列中。每个信道表按升序列举分 组信道的内容。
   
   
   在分组映射后,平均移位信号使信道的利用得到均衡。这些移位信号是一系列的计数器,每一个计数器表示一个分组,第j个分组在{0,1,2,…,Nj- 1}范围内周期计数,Nj是第j个分组中的信道数。被选择分组的计数器对下一个值进行计数,并把他作为移位信号的值输出。
  
  蓝牙中,信道被动态地分成2类信道:好信道NG和坏信道NB=79-NG,定义Nmin为蓝牙设备通信所需的最少频率数。根据Nmin,NG和NB的关系,可以分为H,L两种模式: 3.1 L模式
  
  适用于Nmin小于NG的情形,此时跳频频点全部在好的信道中选择,如图5所示。当跳频发生器产生的是好信道,则不重新映射。当跳频序列中信道不好时,则重新从好信道库中选择一个好的信道。L模式主要工作在FCC规定的低功率状态。 3.2 H模式
  
  适用于Nmin大于NG的情形,此时如果频率选择器输出为坏信道,重新选择代替坏信道的频点中,有可能在曾经被判断为坏信道的序列中选择跳频序列。H模式在有坏跳的情况下,最大限度地支持通信要求。可以同时支持SCO(面向同步的连接)和ACL(异步连接)连接模式。
  
  通过这2种模式,在蓝牙频率选择器中,如果输出的是好信道则直接使用;如果是坏信道,则在好的信道分组中重新选择频率。这样频率选择就避免了输出的频率与其他有干扰的频率相碰撞。
  
  4 结 语
  蓝牙采用一系列的技术 来避免干扰,如LBT(Listen" Before Transmission),AFH和功率控制等。其中AFH机制能保持微微网中良好的QoS,保证网络 正常的吞吐率和可靠性,减少重发,降低延时,同时减轻了对相同频段其他无线设备的干扰,从而提高了频率的利用率。

更多技术支持:xiaowuyeah@163.com

0755-29739852 13242922466

13728690655 QQ:923920247

 

 




zoom of kinect 物联网解决方案 U盘电子称方案 单片机读写U盘 体感放大器单片机读写SD卡

蓝牙4.0模块 无线门铃 门铃 不用电池的无线门铃Copyright © 深圳蓝色飞舞科技有限责任公司 All Right Reserved